Kinematic and Dynamic Adaptation of Human Motion for Imitation

Katsu Yamane

Disney Research, Pittsburgh

Carnegie Mellon University

Programming Robots through Imitation

- needs to adapt observed human motions to
 - robot kinematics / dynamics
 - different limb length, mass, actuation, ...
 - new environment / constraints
 - collision avoidance, task, ...

Issues

- different kinematics / dynamics
 - may be physically infeasible
 - may not be able to accomplish the task
- what can be modified / what has to be preserved
 - ◆ joint trajectory, endeffector trajectory, contact force, ...
 - usually task-dependent
- human adaptation
 - acquired by practice
 - once acquired, easily adapted to various scenes
 - sophisticated motor control? memory?

Related Work

- common problem in robotics and graphics
 - usually formulated as an optimization problem
- synthesis
 - mathematical optimization [Gleicher et al. 1997] [Ude et al. 2004] [Liu et al. 2005]
 - learning [Kuniyoshi et al. 1994] [Atkeson, Schaal 1997] [Bentivegna et al. 2004]
 - task sequence [Nakaoka et al. 2007]
- analysis
 - motion graphs [Kovar et al. 2002] [Lee et al. 2002]
 - motor control [Mataric 2002]

Talk Overview

1. adaptation techniques

	kinematics	dynamics
1) dynamics filter [Yamane, Nakamura 2003]	slightly different	
2) synthesizing manipulation tasks [Yamane, Kuffner, Hodgins 2004]	very different environments and characters	(quasi-static)
3) motorized marionette [Yamane, Hodings, Brown 2003]	limited mobility	different actuation mechanism

2. understanding human adaptation

detailed neuro-musculoskeletal human model [Yamane et al. 2005] [Murai et al. 2008]

Adaptation Techniques

1. Dynamics Filter

[Yamane and Nakamura 2003]

Dynamics Filter

- convert a physically infeasible motion to a feasible one
- simple example

Dynamics Filter

- convert a physically infeasible motion to a feasible one
 - reasons for infeasibility
 - measurement error
 - different kinematic/dynamic parameters
 - manual editing

technique

- obtain desired accelerations by a feedback controller in joint/Cartesian spaces
- project the accelerations onto feasible space by local (online) optimization
- limitation: can only cope with small differences

Dynamics Filter: Concept

Dynamics Filter: Examples

Adaptation Techniques

2. Synthesizing Manipulation Tasks [Yamane, Kuffner, Hodgins 2004]

Synthesizing Manipulation Tasks

- adapt example motions to
 - new objects
 - new environment
 - new task (start/goal positions)

Synthesizing Manipulation Tasks

- combination of model and data
 - motion planning (RRT) [LaValle and Kuffner 2000] and inverse kinematics (UTPoser) [Yamane and Nakamura 2003]
 - relatively small data set (four pick-and-place examples)

results

Synthesizing Manipulation Tasks

using motion capture to bias IK

Adaptation Techniques

3. Motorized Marionette

[Yamane, Hodgins, Brown 2003]

Motorized Marionette

- programming marionettes by imitation
 - inexpensive device for entertainment

- issues
 - different actuation mechanism
 - very limited mobility

Motorized Marionette

- issues and solutions
 - → mapping marker data to marionette's motion range
 →inverse kinematics with string length/direction constraints
 - undesired swing
 - →linear string model and feedforward swing suppression controller

Understanding Human Adaptation

Neuro-Musculoskeletal Human Model

Human Adaptation

- when human learns from observation
 - understands the demonstrator's intention
 - acquires the motion through learning (practice)
 - once acquired, instantly adapted to new environments, constraints and disturbances

- questions
 - how do we understand the demonstrator's intention?
 - what is the mechanism to realize instant adaptation?

Understanding Demonstrator's Intention

- what has to be preserved?
 - joint trajectory
 - endeffector trajectory
 - external force
 - compliance
 - something else?

- automatic extraction is an open issue
 - observing joint trajectories is not enough (obviously)
 - analyzing multimodal data is essential

Instant Adaptation

- hierarchy of controllers
 - high-level motor control in the brain
 - large (100ms+) delay: too slow to cope with disturbance?
 - low-level reflex in the spinal cord
 - sensors
 - somatosensory information (muscle length, tension)
 - touch, temperature, pain
 - smaller (~30ms) delay
 - most humanoid controllers run at or faster than 1KHz
 - → sophisticated mechanism should exist

Towards Human-Level Adaptation

- models for analysis
 - detailed musculoskeletal model for estimating the somatosensory information [Yamane et al. 2005]
 - neuromuscular network model with somatosensory reflex
 [Murai et al. 2008]

Musculoskeletal Model

- skeleton: 155 DOF
 - ♦ 200 bones \rightarrow 53 groups
 - composed of mechanical joints
 - hand/foot fingers not included
- actuator: more than 1,000 wires
 - ◆ 997 muscles: linear actuators
 - ◆ 50 tendons: connect muscles and bones
 - ◆ 117 ligaments: constrain the bones
- algorithms
 - ◆ inverse kinematics → muscle length / velocity
 - ♦ inverse dynamics → muscle tension estimation

Musculo-Tendon Network

mass-less, zero-radius wires with via-points

Example: Muscle Tension Estimation

- input and output of the model
 - input: motor command signals at spinal nerve rami
 - output: muscle tension
- two paths:
 - ◆ CNS→PNS: descending pathway
 - ◆ PNS→PNS: ascending and descending pathways (somatic reflex network)

peripheral nervous system (PNS)

central nervous system (CNS)

Identifying the Motor Command Signals

- independent component analysis (ICA)
 - estimate mutually independent signal sources
 - order of the independent signals is undefined

- \blacksquare dimension of \mathbf{s} ?
 - ◆ 120, the number of relevant spinal nerve rami, is enough!

Identification

- training data
 - walk (2000 frames, 10 seconds)
 - muscle tensions from inverse dynamics
 - ◆ independent signals from ICA
- training
 - ◆ 5000 cycles
 - error
 - average: 2.59%
 - variance: 0.34%

Results: Weight Parameter of Reflex Loop

from Iliacus: agonist for hip flexion

Iliacus		
muscle	weight	
Iliacus	4.20E+00	
Sartorius	2.60E-01	
Rectus Femoris	3.94E+00	
Pectineus	4.60E-01	
Gracilis	-4.06E-01	
Adductor Longus	-1.69E-01	
Adductor Brevis	-3.59E-01	
Adductor Magnus	-4.10E-02	

classified as agonist muscles for hip flexion in sports science

Results: Weight Parameter of Reflex Loop

from Tensor Fasciae Latae: agonist for hip flexion

Tensor Fasciae Latae		
muscle	weight	
Tensor Fasciae Latae	2.93E-01	
Gluteus Maximus	-1.28E-01	
Biceps Femoris	-4.53E-01	
Semitendinosus	-1.02E+00	
Semimembranosus	-1.13E+00	
Gluteus Medius	-4.94E-02	
Gluteus Minimus	-9.30E-01	

classified as antagonist muscles for hip flexion in sports science

Results: Patellar Tendon Reflex

patellar tendon reflex: stretch reflex of quadriceps

Summary

- motion adaptation techniques
 - dynamics filter: adaptation to small differences in kinematics and dynamics
 - synthesizing manipulation tasks: adaptation to different kinematics and environment
 - motorized marionette: completely different kinematics and actuation mechanism
- understanding human adaptation
 - musculoskeletal and neuromuscular network models

Acknowledgements

- Yoshihiko Nakamura (Univ. of Tokyo)
- Akihiko Murai (Univ. of Tokyo)
- Masaya Hirashima (Univ. of Tokyo)
 - dynamics filter
 - neuro-musculoskeletal human model
- Jessica Hodgins (CMU)
- CMU Graphics Lab
 - synthesizing manipulation tasks
 - motorized marionette